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Transition in the fractal properties from diffusion-limited aggregation to Laplacian growth
via their generalization
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Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
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We study the fractal and multifractal properties~i.e., the generalized dimensions of the harmonic measure!
of a two-parameter family of growth patterns that result from a growth model that interpolates between
diffusion-limited aggregation~DLA ! and Laplacian growth patterns in two dimensions. The two parameters are
b that determines the size of particles accreted to the interface, andC that measures the degree of coverage of
the interface by each layer accreted to the growth pattern at every growth step. DLA and Laplacian growth are
obtained atb50, C50 andb52, C51, respectively. The main purpose of this paper is to show that there
exists a line in theb-C phase diagram that separates fractal (D,2) from nonfractal (D52) growth patterns.
Moreover, Laplacian growth is argued to lie in the nonfractal part of the phase diagram. Some of our arguments
are not rigorous, but together with the numerics they indicate this result rather strongly. We first consider the
family of models obtained forb50, C.0, and derive for them a scaling relationD52D3. We then propose
that this family has growth patterns for whichD52 for someC.Ccr , whereCcr may be zero. Next we
consider the wholeb-C phase diagram and define a line that separates two-dimensional growth patterns from
fractal patterns withD,2. We explain that Laplacian growth lies in the region belonging to two-dimensional
growth patterns, motivating the main conjecture of this paper, i.e., that Laplacian growth patterns are two
dimensional. The meaning of this result is that the branches of Laplacian growth patterns have finite~and
growing! area on scales much larger than any ultraviolet cutoff length.
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I. INTRODUCTION

In recent work@1,2# we have introduced a model of frac
tal growth processes that interpolates between diffus
limited aggregation~DLA ! @3# and Laplacian growth pattern
@4,5#, and employed this model to show that these proces
are not in the same universality class. The aim of this pa
is to study the fractal properties of the resulting clusters
particular, we will be led to conjecture that Laplacian grow
is asymptotically of dimension 2, and in this sense is no
fractal at all. This is in contradistinction to DLA for which
the dimension had been computed to be 1.713 . . . @6#.

Laplacian growth patterns are obtained when the bou
ary G of a two-dimensional domain is grown at a rate pr
portional to the gradient of a Laplacian fieldP. Outside the
domain¹2P50, and each point ofG is advanced at a rat
proportional to¹P @4,5#. In DLA @3# a two-dimensional clus-
ter is grown by releasing fixed size random walkers fro
infinity, allowing them to walk around until they hit an
particle belonging to the cluster. Since the particles are
leased one by one and may take arbitrarily long time to
the cluster, the probability field is quasistationary and in
complement of the cluster we have again¹2P50. The
boundary condition at infinity is the same for the two pro
lems; in radial geometry asr→` the flux is ¹P5const
3 r̂ /r . Since the probability for a random walker to hit th
boundary is again proportional tou¹Pu, one could think that
in the asymptotic limit when the size of the particle is mu
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smaller than the radius of the cluster, repeated growth ev
lead to a growth process that is similar to Laplacian grow
Of course, the ultraviolet regularizations in the two proces
were taken different; in studying Laplacian growth one us
ally solves the problem with the boundary conditionP
5sk wheres is the surface tension andk the local curva-
ture of G @7#. Without this ~or some other! ultraviolet regu-
larization Laplacian growth reaches a singularity~cusps! in
finite time @5#. In DLA the ultraviolet regularization is pro-
vided by the finite size of the random walkers. Howev
many researchers believed@8# that this difference, which for
very large clusters controls only the smallest scales of
fractal patterns, were not relevant, expecting the two mod
to lead to the clusters with the same asymptotic dimensio
While we argued recently that the difference in ultravio
regularization is indeed not crucial@2#, the two problems are
nevertheless, in two different universality classes. To es
lish this we have constructed a family of growth proces
that includes DLA and a discrete version of Laplaci
growth as extreme members, using the same ultraviolet re
larization ~and see Sec. II for a further discussion of t
regularization!. We thus exposed the essential difference
tween DLA and Laplacian growth. DLA is grown serially
with the field being updated after each particle growth.
the other hand, all boundary points of a Laplacian pattern
advanced in parallel at once~proportional to ¹P). We
showed that this difference is fundamental to the asympt
dimension, putting the two problems in different universal
classes@1#. Here we wish to go further and suggest th
Laplacian growth patterns are two-dimensional.

In Sec. II we review briefly the two-parameter model th
had been introduced to establish these results. We dis

ty,
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there the two parametersb andC that are used to interpolat
between DLA and Laplacian growth. In Sec. III we analy
the generalized dimensionsDq and relate them to the scalin
of moments of objects which are natural to the theory.
Sec. IV we discuss first a family of growth models which
a one-parameter generalization of DLA (b50, 0<C<1),
and show that the fractality of DLA is lost for someC.Ccr in
favor of two-dimensional growth patterns. It is not impo
sible thatCcr50. For growth patterns in this family we deriv
a scaling relationD52D3. Under some plausible assum
tions we propose that forC.Ccr there exists another scalin
relation, i.e.,D511D2, which implies immediatly thatD
52. Second, we discuss the one-parameter family of mo
that generalizes Laplacian growth (b52, 0<C<1) and
show that the above relation is not obtained here, leadin
the existence of fractal patterns also for high values ofC.
Finally, in Sec. V we reach the main conjecture of this pap
i.e., that Laplacian growth patterns are two-dimensional
Sec. VI we offer a discussion and some open questions
are left for future research.

II. ITERATED CONFORMAL MAPS FOR PARALLEL
GROWTH PROCESSES

The method of iterated conformal maps for DLA was i
troduced in Ref.@9#. In Refs.@1,2# we have presented a gen
eralization to parallel growth processes. We were interes
in F (n)(w) that conformally maps the exterior of the un
circle eiu in the mathematicalw plane onto the complemen
of the ~simply connected! cluster ofn particles in the physi-
cal z plane. The unit circle is mapped onto the boundary
the cluster. In what follows we use the fact that the gradi
of the Laplacian fieldP@z(s)# is

uP@z~s!#u5
1

uF (n)8~eiu!u
, z~s!5F (n)~eiu!. ~1!

Heres is an arc-length parametrization of the boundary. T
map F (n)(w) is constructed recursively. Suppose that
have alreadyF (n)(w) that maps to the exterior of a cluster
n particles in the physical plane and we want to find the m
F (n1p)(w) after p additional particles were added to i
boundaryat once, each proportional in size to the local valu
of uPub/2. To growonesuch particle we employ the eleme
tary mapfl,u that transforms the unit circle to a circle wit
a semispherical ‘‘bump’’ of linear sizeAl around the point
w5eiu,

fl,0~w!5AwH ~11l!

2w
~11w!F11w1wS 11

1

w2

2
2

w

12l

11l D 1/2G21J 1/2

, ~2!

fl,u~w!5eiufl,0~e2 iuw!. ~3!
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If we update the field after the addition of this single partic
then

F (n11)~w!5F (n)
„fln11 ,un11

~w!…, ~4!

whereF (n)(eiun11) is the point on which the (n11)th par-
ticle is grown andAln is the size of the grown particle
divided by the Jacobian of the map,F8(n)(eiun11), at that
point.

The mapF (n11)(w) adds on a new semicircular bump
the image of the unit circle underF (n)(w). The bumps in the
z plane simulate the accreted particles in the physical sp
formulation of the growth process. For the height of t
bump to be proportional tou¹P(z(s))ub/2 we need to choose
its area proportional touF (n)8(eiun11)u2b @see Eq.~1!#, or

ln115
l0

uF (n)8~eiun11!ub12
. ~5!

Herel0[l̃0
(b12)/2, andl̃0 is a fixed typical area. With this

choiceln is dimensionless. Withb50 these rules produce
DLA cluster, for which the particles are of constant are
With b52 we grow bumps in the physical space who
linear scale is proportional to the gradient of the fie
u¹P@z(s)#u, as is appropriate for Laplacian growth. Next,
grow p ~nonoverlapping! particles in parallel, we accret
them without updating the conformal map. In other words,
add a new layer ofp particles when the cluster containsm
particles, we need to choosep angles on the unit circle
$ũm1k%k51

p . At these angles we grow bumps that in th
physical space have the wanted linear scale~ranging from
constant to proportional to the gradient of the field!,

lm1k5
l0

uF (m)8~ei ũm1k!ubuF~m1k21!8~eium1k!u2
,

k51,2 . . . ,p. ~6!

At this moment theum1k are not defined; only theũm1k.
This is due to the reparametrization that needs to be ta
into account as explained next.

Of course, every composition effects a reparametrizat
of the unit circle, which has to be taken into account. To
this, we define a series$um1k%k51

p according to

F (m)~ei ũm1k![F (m1k21)~eium1k!. ~7!

After thep particles were added, the conformal map and th
the field should be updated. In updating, we will usep com-
positions of the elementary mapfl,u(w). Next we define the
conformal map used in the next layer growth according t

F (m1p)~v![F (m)+fum11 ,lm11
+•••+fum1p ,lm1p

~v!.
~8!

In this way we achieve the growth at the images underF (m)

of the points$ũm1k%k51
p . To compute theu series from a

given ũ series we use Eq.~8! to rewrite Eq.~7! in the form

eium1k5fum1k21 ,lm1k21

21 +•••+fum11 ,lm11

21 ~ei ũm1k!. ~9!
8-2
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TRANSITION IN THE FRACTAL PROPERTIES FROM . . . PHYSICAL REVIEW E66, 016308 ~2002!
The inverse map fu,l
21 is given by fu,l

21(v)
5eiuf0,l

21(e2 iuv) with

f0,l
215

lv26Al2v42v2@12~11l!v2#@v22~11l!#

12~11l!v2
,

~10!

where the positive root is taken for Rev.0 and the negative
root for Rev,0.

Evidently, Laplacian growth calls for choosing the ser

$ũm1k%k51
p such as to have full coverage of the unit circ

~implying the same for the boundaryG). On the other hand
DLA calls for growing a single particle before updating th
field. Since it was shown@10# that in DLA growth ln de-
creases on the average whenn increases, in the limit of large
clusters DLA is consistent with vanishingly small covera
of the unit circle. To interpolate between these two cases
introduce a parameter that serves to distinguish one gro
model from the other, giving us a two-parameter control~the
other parameter isb). This parameter is thedegree of cov-
erage. Since the area covered by the preimage of thenth
particle on the unit circle is approximately 2Aln, we intro-
duce the parameter

C5
1

p (
k51

p

Alm1k. ~11!

~In Ref. @2# we showed how to measure the coverage
actly.! Since this is the fraction of the unit circle which
covered in each layer, the limit of Laplacian Growth is o
tained withC51. DLA is asymptotically consistent withC
50. Of course, the two models differ also in the size of t
growing bumps, with DLA having fixed size particles@b
50 in Eq. ~5!#, and Laplacian growth having particles pr
portional to¹P @b52 in Eq.~6!#. Together withC we have
a two parameter control on the parallel growth dynami
with DLA and Laplacian growth occupying two corners
the b,C plane, at the points~0,0! and ~2,1!, respectively.

Obviously, the partially serial growth within the layer in
troduces an additional freedom that is theorder of placement
of the bumps on the unit circle. In Refs.@1,2# we have shown
that the order is in fact immaterial as far as the asympt
fractal properties of the clusters are concerned. Accordin
we will take random choices ofũm1k with a rule of skipping
overlaps.

We should note that in our approach the regularization
putative singularities is not achieved with surface tensi
but by having a minimal size bump, similarly to the regula
ization of DLA. Our rules of growth withb52 andl0 cho-
sen once and for all, guarantee that every layer of growth
exactly the same area. This in the continuous time Laplac
growth model translates to a particular choice of the ti
stepdt. Clearly, one has freedom in choosingdt, or of the
size l0 in each layer, as long as this does not affect
nature of the growth. In particular, we can havel0 chosen
such that the maximal physical bump is of constant ar
Oncel0 is chosen, the sharpest feature that can be achie
is a bump of sizel0, and the worst possible ‘‘singularity’’ is
01630
s

e
th

-

-

,

ic
y,

f
,

-

as
n

e

e

a.
ed

a line of such bumps, exactly as in DLA. Thus the putat
cusp singularity of Laplacian growth is avoided in a mann
that is identical for all the growth models in our two
parameter family.

The conformal mapF (n)(v) admits a Laurent expansio

F (n)~v!5F1
(n)v1F0

(n)1
F21

(n)

v
1•••. ~12!

The coefficient of the linear term is the Laplace radius, a
was shown to scale like

F1
(n);S1/D, ~13!

whereS is the area of the cluster

S5(
j 51

n

l j uF8( j 21)~eiu j !u2. ~14!

Note that forb50 this and Eq.~5! imply that S5nl0. In-
deed forb50 this estimate had been carefully analyzed a
substantiated~up to a factor! in Ref. @11#. On the other hand
F1

(n) is given analytically by

F1
(n)5)

k51

n

A~11lk!, ~15!

and therefore can be determined very accurately.
The conclusion from the calculations presented in Re

@1,2# is that for C.0 the fractal dimension of the growt
patterns depends continuously on the parameters, grow
monotonically upon decreasingb or increasingC. It is quite
obvious why increasingC should increase the dimension. B
forbidding particles to overlap we simply force them into t
fjords, not allowing them to hit the tips only~as is highly
probable!. Also decreasingb increases the dimension, sinc
we grow larger particles into the fjords, whereas increas
b reduces the size of particles added to fjords and increa
the size of particles that accrete onto tips. In particular,
argued that DLA and our discretized Laplacian growth ca
not have the same dimensions, putting them in different u
versality classes. In the rest of this paper we make th
observations more quantitative and precise.

III. MULTIFRACTAL PROPERTIES

A. Generalized dimensions

The fractal dimension in theb-C family of models,
D(b,C), is introduced as the exponent relating the area
the clusterSn to its linear scale@which is measured by the
~dimensionless! Laplace radiusF1

(n)] ,:

Sn;~F1
(n)!D(b,C)l̃0 . ~16!

In this equationl̃0[l0
2/(21b) . The multifractal exponents

@12# are defined in analogy to those for DLA in terms of th
moments of the~dimensionless! electric field E(s) on the
boundary of the cluster@13#,
8-3
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FIG. 1. Layer and harmonic
averages ofln as a function of the
number of layers, forb50. Pan-
els ~a!–~d!, C50.01, 0.1, 0.3, and
0.5, respectively.
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^E(q21)&;~F1
(n)!2(q21)Dq(b,C)

;~Sn /l̃0!2(q21)Dq(b,C)/D(b,C), ~17!

where^•••& represents the harmonic average for the (b,C)
clusters in question. Note that these exponents are for a fi

size partition with boxes of lengthAl̃0, with asymptotics for
an infinitely large cluster. A supremum over arbitrary par
tions may lead to different exponents, cf. Ref.@14#.

This result translates immediately@10# to the multifractal
fluctuations of the bump areasln added in the mathematica
plane. Asln

q;En
(21b)q , whereEn is the field computed a

z(s)5F (n)(eiun). We therefore write

^ln
q&;~Sn /l̃0!2(21b)qD(21b)q11(b,C)/D(b,C). ~18!

Specifically, we can derive the following important m
ments:

^Aln&;~Sn /l̃0!2(11b/2)D(21b/2) /D,

^ln&;~Sn /l̃0!2(21b)D31b /D, ~19!

^ln
b/(21b)&;~Sn /l̃0!2bD11b /D,

where naturally all the dimensions are functions of (b,C).
We can also estimate the way in which the maximal bu
areas scale

ln,max[ lim
q→`

^ln
q&1/q;~S/l̃0!2(21b)D`(b,C)/D(b,C). ~20!
01630
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Consider now the addition of one layer ofp particles to
the growing cluster. We can rewrite Eq.~11! as

C5~1/p!pAln, ~21!

where we have introduced the notationln
q to represent the

average over a layer ofp particles,

f ~ln![
1

p (
k51

p

f ~ln1k!. ~22!

For our considerations below it is important to relate t
layer averagesln

q to harmonic averageŝln
q&. This relation-

ship may very well depend on the value ofb. The two cases
that are of highest interest to us areb50 andb52, and we
will examine them separately.

IV. SCALING RELATIONS FOR THE FRACTAL
DIMENSION D

A. The casebÄ0 and CÌ0

We examine the relationship between layer and harmo
averages numerically. In Fig. 1 we show the two average
the number of layers for the caseq51, b50 and four values
of C. In Fig. 2 we show the same for the caseq50.5, b
50 and the same four values ofC.

Examining the results it appears that for the higher val
of C we can assume that in the scaling sense

ln
q;^ln

q&, b50. ~23!
8-4



TRANSITION IN THE FRACTAL PROPERTIES FROM . . . PHYSICAL REVIEW E66, 016308 ~2002!
FIG. 2. Layer and harmonic
averages ofln

0.5 as a function of
the number of layers, forb50.
Panels~a!–~d!, C50.01, 0.1, 0.3,
and 0.5, respectively.
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Note that for smaller values ofC the evidence is not as clea
cut as for higher values. The number of pointsp in each layer
is relatively small and the layer average is highly fluctuatin
Nevertheless, even for the caseC50.01, if we perform a
running average on the layer average data, we converge
well onto the harmonic average. We therefore propose
proceed with the conjecture that Eq.~23! is correct for all the
values ofC andb50, and investigate the implications of th
scaling relation for the cases for which it is correct. An im
mediate consequence of Eqs.~21! and ~23! is that

p;C/^Aln&;C~S/l̃0!D2 /D. ~24!

We note that this means thatp→` asymptotically for every
value ofC, while p/n→0.

Next observe that by definition

F1
(n1p)/F1

(n)5Pk51
p ~11ln1k!

a'11apln. ~25!

In light of Eq. ~16! we write

Sn1p

Sn
5S F1

(n1p)

F1
(n) D D

'11aDpln. ~26!

On the other hand, we estimate

Sn1p

Sn
'11

pl̃0

Sn
, ~27!

and comparing with Eq.~26! we find
01630
.
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to

Sn'
l̃0

aDln

. ~28!

If Eq. ~23! is used, we find finally

Sn'l̃0S Sn

l̃0
D 2D3 /D

, ~29!

from which we derive the well known ‘‘electrostatic rela
tion,’’

D52D3 . ~30!

This result was known forC50 @15#, and is generalized here
under the conjecture~23! to all values ofC.

Let us consider now the probability to hit at the point
maximal radius. We propose that for any finiteC the prob-
ability for this event is finite. We stress that this ‘‘point’’ i

actually a region on the interface of sizeAl̃0 in every layer.
In particular, we expect that the growth process will hit t
point of maximal radius every finite number of layers, whe
this number is of the order of 1/C. We also know for sure tha
we have at most one hit per layer since particles cannot o
lap in the dynamics.

Consider now the scaling of the size of the growth p
tern, which is measured byF1

(n) . First we know thatF1
(n)

;(S/l̃0)1/D, and therefore

dF1
(n)/dS;~S/l̃0!1/D21/l̃0 . ~31!
8-5
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On the other hand, we estimate the same object using
following argument: the maximal radiusR(n) increases by
Al̃0 every time that it is hit. This occurs every 1/C layers in
which p particles were added. Therefore

dR(n)

dS
;

Al̃0

pl̃0 /C . ~32!

FIG. 3. The numberp of bumps in a layer vs the numbern of
bumps in the growth pattern, in a log-log plot. From top to botto
that is shown forC50.5, 0.3, 0.1, and 0.01, respectively. In whi
lines we show the scaling lawsp;n1/2; this law fits the data forC
>0.1 and is not in contradiction with the~noisy! data even forC
50.01.
01630
he

Comparing Eqs.~31! and~32!, using Eq.~24! we obtain the
scaling relation

D511D2 . ~33!

Using the inequalities between the generalized dimens
and Eq.~31! we write

D215D2>D35D/2 for all C.Ccr , ~34!

which is equivalent to

D52 for all C.Ccr . ~35!

In other words, we conclude that along the lineb50 in the
phase diagramb-C, there exists a transition to growth pa
terns of dimension 2.

Since our arguments are not rigorous and the result q
surprising, we will examine the assumptions using an ad
tional consideration. From Eqs.~33! and ~34! it follows that
D251, and from Eq.~24! it then follows thatp scales like

p;S1/2, C.Ccr . ~36!

This prediction is examined directly in Fig. 3. We see tha
is obeyed extremely well for all the values ofC>0.1, and it
is not in contradiction with the data even forC50.01. We
therefore cannot exclude the possibility thatCcr50.

To gain intuition to the meaning of this result we show
Fig. 4 the actual growth patterns forb50 andC50.01, 0.1,
0.3, and 0.5, respectively. To plot these figures we findall the
exposed branch cuts on the unit circles which are associ
r-
e

FIG. 4. Clusters for b50.
Panels~a!–~d!, C50.01, 0.1, 0.3,
and 0.5, respectively. Note the a
eas significantly larger than th
UV cutoff l0, which appear al-
ready forC50.01.
8-6
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TRANSITION IN THE FRACTAL PROPERTIES FROM . . . PHYSICAL REVIEW E66, 016308 ~2002!
with the bumps added in the growth process~see Ref.@2# for
details!. Then we plot the image of all these points under
conformal map and connect them by lines. Thus we are g
anteed that what is plotted is the actual contour of the gro
pattern, of the image of the unit circle in the mathemati
domain, with all the fjords fully resolved. We see that ev
with the lowest value ofC the branches appear to gain su
stance as they grow, having a width that is larger thanAl0
~the typical corrugation of the interface!. Consequently it is
not impossible thatD52 even for the lowest values ofC
.0. If this is so, it is not due to the existence of an ultrav
let cutoff, but due to the finiteness ofC. With C50 ~the DLA
limit ! the serial algorithm favors strongly truly fractal pa
terns. The parallel growth algorithm with finiteC squeezes
more substance into the fjords, reducing that tendency.
higher values ofC it becomes obvious that the growth pa
terns are two dimensional, and forC50.5 the pattern grows
like a roughened disk. The main conclusion of this analy
is that we certainly cross somewhere along the lineb50
into growth patterns that are two-dimensional. Whether
not the critical value ofC is finite or zero cannot be dete
mined by numerics alone.

If we accept the possibility that even the lowest values
C are associated with growth patterns that are two dim
sional, then we should stress that standard ways of esti
ing the dimension of these clusters, especially for the low
value of C, may fail to discover this fact. For example, w
can computeF1

(n) and then, using Eq.~13!, attempt to extract
the dimension from log-log plots orF1

(n) againstS. This
method works very well for the fractal case, but it does n
appear to do so well for the cases at hand. In Fig. 5 we s
such log-log plots for all the clusters of Fig. 4. We see t
even with 100 000 particles the dimension estimate is w
below the suspectedD52, except forC50.5. In fact, any
practitioner in the fractal field would be happy to interpr
the scaling obtained forC50.01 as an indication that it is in
the same universality class as DLA, with dimension ve
close toD51.71. While we cannot state confidently that f
C50.01 the growth pattern is two-dimensional, we stress
the dimension estimates obtained from log-log plots can

FIG. 5. The first Laurent coefficientF1
(n) as a function of the

area forb50 andC50.01, 0.1, 0.3, and 0.5. The fractal dimensi
D is obtained for the slope viaF1

(n);Al0(S/l0)1/D.
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only taken as lower bounds on the true dimension, and th
may not be very sharp.

A possibly better way to measure the dimension would
through the result~33! when it holds. We have very goo
methods to determine the correlation dimensionD2, going
back to the Grassberger-Procaccia algorithm@16#. To this
aim we choose randomlym5100 000 points$u i% i 51

m , and
compute their positions on the interface of the clusterzi
5F (n)(eiu i). Next we compute the correlation integral

C(2)~r !5(
iÞ j

Q~ uzi2zj u2r !, ~37!

whereQ(x) is the step function, being 1 forx<0 and 0 for
x.0. The correlation integral is known to scale according

C(2)~r !;r D2. ~38!

In Fig. 6 we display this object in a log-log plot as a functio
of r. All the values ofC agree with a correlation dimension o
D251, as can be seen from the plots at small scales.
those values ofC for which Eq.~33! is correct this leads to
the aforementioned resultD52.

B. The casebÄ2 and CÌ0

The next interesting family of growth patterns that w
focus on is obtained forb52 and C.0, with Laplacian
growth expected to be realized forC51. We find that forb
.0 the numerics do not support the scaling relation~23!. In
Figs. 7 and 8 we show the layer and harmonic averages
b52, and it is obvious that in this case

ln
q<^ln

q& ~39!

in the scaling sense.
Once we have lost the scaling relation~23! we cannot

argue thatD52 for any value ofC.0. We will find numeri-
cally that along the lineb52 we indeed find fractal patterns
~and cf. the following section!; nevertheless, even along th
line there exists a transition to two-dimensional patterns,
beit at a finite and rather high value ofC. Next we want to
estimate this value.

FIG. 6. The correlation dimensionD2 for b50 andC50.01,
0.1, 0.3, and 0.5. The thick line has slope 1, indicating thatD2

51 and thereforeD52 for all shownC.
8-7



HENTSCHEL, LEVERMANN, AND PROCACCIA PHYSICAL REVIEW E66, 016308 ~2002!
FIG. 7. Layer and harmonic
averages ofln as a function of the
number of layers, forb52. Pan-
els ~a!–~d!, C50.01, 0.1, 0.3, and
0.5, respectively.

FIG. 8. Layer and harmonic
averages ofln

0.5 as a function of
the number of layers, forb52.
Panels~a!–~d!, C50.01, 0.1, 0.3,
and 0.5, respectively.
016308-8
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TRANSITION IN THE FRACTAL PROPERTIES FROM . . . PHYSICAL REVIEW E66, 016308 ~2002!
V. CONJECTURE: LAPLACIAN GROWTH IS
TWO-DIMENSIONAL

In this section we motivate our conjecture that Laplac
growth patterns are not fractal patterns at all, but rather
terns of dimension 2. We have to be a bit circumvent, si
as explained in Ref.@2#, we cannot directly run our algorithm
for theb-C model for values ofC higher than about 0.65. Th
reason is that it becomes impossible to fill up, by rand
selection of points on the unit circle, a full layer of bumps
the physical interface. Therefore our aim is to find a line
theb-C phase diagram that separates fractalD,2 from two-
dimensional growth patterns. That such a line must exist
can convince ourselves by examining the family of grow

FIG. 9. The first Laurent coefficientF1
(n) as a function of the

area forb52 andC50.01, 0.1, 0.3, and 0.5. The fractal dimensi

D is obtained for the slope viaF1
(n);Al̃0(S/l̃0)1/D.
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models that are seen forb521, see Fig. 10. Obviously
these are two dimensional. The family of growth patter
obtained forb50 were shown in Fig. 4, and as we sa
above, there must be a cross over two-dimensional patt
in this family. Going up tob51 we show the growth pat
terns in Fig. 11. In this case the images indicate that for
lower values ofC the growth patterns are fractal, whereas f
higher values ofC they become two dimensional. Thus th
line of separation that we seek in theb-C phase diagram
appears to cut theb51 line. Finally, in Fig. 12 we presen
the family of growth patterns obtained forb52. It appears
that the transition line intersects also theb52 line.

All the patterns exhibited in Figs. 4, 10–12 are grow
with a fixed sizel0. Consequently, forb.0 the actual mean
size of the bumps in the physical space decreases as
cluster grows, while it increases forb,0. This may lead to
worries, i.e., that forb.0 the growth arrests and that fo
b,0 the increase in the size of the bumps leads to cover
of fjords, such that the two-dimensional patterns shown
Fig. 10 would be an artifact. To disperse these worries
have considered alternative growth algorithms with vary
the size ofl0. The first such algorithm is obtained by requ
ing that the total area covered in each layer of growth
constant, i.e.,

(
k51

p

ln1kuF8(n1k)~eiun1k!u2

5l0~n!(
k51

p

uF8(n)~ei ũn1k!u2b5const. ~40!

Note that for constant coverageC this rule coincides with
fixed values ofl0 for b52 @cf. Eq. ~11!#. In the second
FIG. 10. Growth patterns for
b521. Panels~a!–~d!, C50.01,
0.1, 0.3, and 0.5, respectively.
8-9



HENTSCHEL, LEVERMANN, AND PROCACCIA PHYSICAL REVIEW E66, 016308 ~2002!
FIG. 11. Growth patterns for
b51. Panels ~a!–~d!, C50.01,
0.1, 0.3, and 0.5, respectively.

FIG. 12. Growth patterns for
b52. Panels ~a!–~d!, C50.01,
0.1, 0.3, and 0.5, respectively.
016308-10
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TRANSITION IN THE FRACTAL PROPERTIES FROM . . . PHYSICAL REVIEW E66, 016308 ~2002!
algorithm we choose the maximal size of the bump in
physical plane to be constant from layer to layer,

l0~n!max
k51

p

$uF8(n)~eiun1k!u2b%5const. ~41!

This rule coincides with fixed values ofl0 for b50. We
found that in all cases the patterns shown above remain
variant to the change of the algorithms. Thus we submit t
the figures shown can be fully trusted.

To find the line that separates fractal from tw
dimensional patterns we estimate the dimensions dire
from log-log plots ofF (n) vs S. We have seen above that su
estimates arelower bounds to the actual asymptotic dime
sion. As these logarithmic plots are invariably concave,
can use the slope at the largest values of area available
measure for the lower bound on the dimension~see, e.g., Fig.
9!. In Fig. 13 we show the three lines obtained by search
for a given value ofC, the value ofb for which for the first
time the dimension estimated fromF (n) vs S crosses the
value D51.90 ~upper curve!, D51.95 ~middle line!, and
D51.99 ~lower curve!. We propose that the last two line
may very well be already beyond the true line that separ
fractal from D52 asymptotic dimension. From the discu
sion of Sec. IV A we cannot even exclude the possibility th
the transition line obfuscates theb50 line. All the region
below the lower line is almost surely representing pattern
D52, but we strongly believe that this is the case also
the middle line. The lines were obtained by finding, as
plained, the values ofb yielding D51.90, 1.95, and 1.99
respectively, and then fitting to the points a quadratic fu
tion. Next we extrapolated the three fits to values ofC that
are not readily available in our algorithm. The three fit lin
intersect theb52 line at C50.73, 0.78, and 0.79, respe

FIG. 13. The phase diagram in theb-C plane. The data points in
crosses, triangles, and circles represent values ofb andC for which
the radius-area relationship predictsD51.90, D51.95, andD
51.99, respectively. The lines are quadratic fits. We propose
the region below the lines represents two-dimensional growth
terns, see text for details.
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tively. We thus propose that the valueC51 for b52 is com-
fortably within the region of two-dimensional patterns in th
phase diagram.

VI. CONCLUSIONS

We have presented a careful numerical study of a tw
parameter model of growth patterns that generalizes and
terpolates between diffusion-limited aggregation and Lapl
ian growth patterns. The model gives rise to a rich pleth
of growth patterns, with fractal dimensions that depend
the values of the parametersb andC. Forb50 andC50 we
obtain DLA. Laplacian growth patterns haveb52 and C
51, but we cannot probe the valueC51 within our algo-
rithm. Since our aim, in part, is to demonstrate that Laplac
growth patterns are not fractal, we resorted to examining
phase diagramb-C. We established, on the basis of scali
arguments, simulations, and visual observations that
phase diagram contains a line of transition between fra
and two-dimensional growth patterns. We have estimated
position of this line, and demonstrated that Laplacian grow
patterns belong safely in the region of two-dimension
growth patterns.

One should point out that the statement that Laplac
growth are two-dimensional does not mean that it is a gro
ing disk. To the eye the patterns can look fractal, and in f
radius-area log-log plots might initially even indicate that t
dimension is low, and may be of the order of the dimens
of DLA. Deep fjords may exist in the structure. The releva
question is whether the growing branches of the struct
contain substance~area! and whether this area is growin
relatively with the growth of the pattern. The growth patte
shown in Fig. 11~d! is a case in point. It looks fractal to th
naked eye, but careful examination shows that the branc
have area. Thus one needs to decide whether this area is
to some ultraviolet cutoff length, or does it grow systema
cally beyond what is expected on the basis of the existe
of such a cutoff.

Before closing we reiterate that our demonstration t
Laplacian growth patterns are two-dimensional is not dire
We cannot, within our algorithm, growC51 patterns. We
therefore leave this at the moment as a conjecture. It rem
a theoretical challenge to show that this conjecture is ind
provable by direct mathematical analysis. We also leave
future work the question whether theb50 line represents
two-dimensional growth patterns for allC.0. Finally, we
propose that future work may make use of the fractal patte
along the lineC50, b.0 for further fundamental studie
of DLA and related phenomena.
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