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We study the fractal and multifractal properti¢®., the generalized dimensions of the harmonic measure
of a two-parameter family of growth patterns that result from a growth model that interpolates between
diffusion-limited aggregatiofDLA ) and Laplacian growth patterns in two dimensions. The two parameters are
BB that determines the size of particles accreted to the interface] t#rat measures the degree of coverage of
the interface by each layer accreted to the growth pattern at every growth step. DLA and Laplacian growth are
obtained at3=0,C=0 andB=2,C=1, respectively. The main purpose of this paper is to show that there
exists a line in the3-C phase diagram that separates fracE(2) from nonfractal D=2) growth patterns.
Moreover, Laplacian growth is argued to lie in the nonfractal part of the phase diagram. Some of our arguments
are not rigorous, but together with the numerics they indicate this result rather strongly. We first consider the
family of models obtained fop=0, C>0, and derive for them a scaling relati@n=2D ;. We then propose
that this family has growth patterns for whidh=2 for someC>C,, whereC. may be zero. Next we
consider the wholg-C phase diagram and define a line that separates two-dimensional growth patterns from
fractal patterns withb <2. We explain that Laplacian growth lies in the region belonging to two-dimensional
growth patterns, motivating the main conjecture of this paper, i.e., that Laplacian growth patterns are two
dimensional. The meaning of this result is that the branches of Laplacian growth patterns haveffitite
growing) area on scales much larger than any ultraviolet cutoff length.
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[. INTRODUCTION smaller than the radius of the cluster, repeated growth events
lead to a growth process that is similar to Laplacian growth.
In recent work{1,2] we have introduced a model of frac- Of course, the ultraviolet regularizations in the two processes
tal growth processes that interpolates between diffusionwere taken different; in studying Laplacian growth one usu-
limited aggregatiofDLA) [3] and Laplacian growth patterns ally solves the problem with the boundary conditiéh
[4,5], and employed this model to show that these processes ok whereo is the surface tension andthe local curva-
are not in the same universality class. The aim of this papeture of I' [7]. Without this (or some otherultraviolet regu-
is to study the fractal properties of the resulting clusters. Inarization Laplacian growth reaches a singulafitysps in
particular, we will be led to conjecture that Laplacian growthfinite time [5]. In DLA the ultraviolet regularization is pro-
is asymptotically of dimension 2, and in this sense is not avided by the finite size of the random walkers. However,
fractal at all. This is in contradistinction to DLA for which many researchers believggl that this difference, which for
the dimension had been computed to be 3.71. [6]. very large clusters controls only the smallest scales of the
Laplacian growth patterns are obtained when the boundfractal patterns, were not relevant, expecting the two models
ary I' of a two-dimensional domain is grown at a rate pro-to lead to the clusters with the same asymptotic dimensions.
portional to the gradient of a Laplacian fieRl Outside the  While we argued recently that the difference in ultraviolet
domainV2P=0, and each point of is advanced at a rate regularization is indeed not crucig], the two problems are,
proportional toVP [4,5]. In DLA [3] a two-dimensional clus- nevertheless, in two different universality classes. To estab-
ter is grown by releasing fixed size random walkers fromlish this we have constructed a family of growth processes
infinity, allowing them to walk around until they hit any that includes DLA and a discrete version of Laplacian
particle belonging to the cluster. Since the particles are regrowth as extreme members, using the same ultraviolet regu-
leased one by one and may take arbitrarily long time to hifarization (and see Sec. Il for a further discussion of the
the cluster, the probability field is quasistationary and in theegularization. We thus exposed the essential difference be-
complement of the cluster we have agaifP=0. The tween DLA and Laplacian growth. DLA is grown serially,
boundary condition at infinity is the same for the two prob-yith the field being updated after each particle growth. On
lems; in radial geometry as—c the flux is VP=const the other hand, all boundary points of a Laplacian pattern are
Xr/r. Since the probability for a random walker to hit the advanced in parallel at oncéroportional to VP). We
boundary is again proportional t§ P|, one could think that showed that this difference is fundamental to the asymptotic
in the asymptotic limit when the size of the particle is muchdimension, putting the two problems in different universality
classes[1]. Here we wish to go further and suggest that
Laplacian growth patterns are two-dimensional.
*Permanent address: Department of Physics, Emory University, In Sec. Il we review briefly the two-parameter model that
Atlanta, GA. had been introduced to establish these results. We discuss
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there the two parametesand(C that are used to interpolate If we update the field after the addition of this single particle,

between DLA and Laplacian growth. In Sec. Il we analyzethen

the generalized dimensioiiy, and relate them to the scaling P DWW =DM (g, , (W), (4)

of moments of objects which are natural to the theory. In il

Sec. IV we discuss first a family of growth models which is where®("(e!?n+1) is the point on which ther(+1)th par-

a one-parameter generalization of DLB%0, 0<C<1), ticle is grown and\\, is the size of the grown particle
and show that the fractality of DLA is lost for sonfe>C.,in  divided by the Jacobian of the mag,’ (W (e'?n+1), at that
favor of two-dimensional growth patterns. It is not impos- point.

sible thatC.,=0. For growth patterns in this family we derive ~ The map®("*1)(w) adds on a new semicircular bump to

a scaling relatiorD =2D,. Under some plausible assump- the image of the unit circle unddr(™(w). The bumps in the
tions we propose that fat>C,, there exists another scaling Z plane simulate the accreted particles in the physical space
relation, i.e.,D=1+D,, which implies immediatly thab formulation of the .growth process. For the height of the
=2. Second, we discuss the one-parameter family of modeRUMP to be proportional v P(2(s))|# we need to choose
that generalizes Laplacian growth3€2, 0<C<1) and its area proportional tpb("V'(e'?n+1)|~# [see Eq(1)], or

show that the above relation is not obtained here, leading to

the existence of fractal patterns also for high value< of Ao

Finally, in Sec. V we reach the main conjecture of this paper, An
i.e., that Laplacian growth patterns are two-dimensional. In

Sec. VI we offer a discussion and some open questions th‘ﬁere)\ozxo(ﬁ*z)’zv andXO is a fixed typical area. With this

+17 T . )
|(I)(n) (e' 0n+1)|,3+2

are left for future research. choice\, is dimensionless. Witi8=0 these rules produce a
DLA cluster, for which the particles are of constant area.
IIl. ITERATED CONFORMAL MAPS FOR PARALLEL With =2 we grow bumps in the physical space whose

linear scale is proportional to the gradient of the field

|[VP[z(s)]|, as is appropriate for Laplacian growth. Next, to
The method of iterated conformal maps for DLA was in- grow p (nonoverlapping particles in parallel, we accrete

troduced in Ref[9]. In Refs.[1,2] we have presented a gen- them without updating the conformal map. In other words, to

eralization to parallel growth processes. We were intereste@ddd a new layer op particles when the cluster contains

in ®M(w) that conformally maps the exterior of the unit Particles, we need to chooge angles on the unit circle

circle €% in the mathematicalv plane onto the complement {6m.}k-1. At these angles we grow bumps that in the

of the (simply connectedcluster ofn particles in the physi- physical space have the wanted linear sdatging from

cal z plane. The unit circle is mapped onto the boundary ofconstant to proportional to the gradient of the field

the cluster. In what follows we use the fact that the gradient

of the Laplacian fieldP[z(s)] is Ao
Amik=

GROWTH PROCESSES

|q>(m)’(ei9m+k)|ﬁ|@(m+k—1)’(ei k)2 '

1 .
IP[z(s)]|=————, z(s)=dM(e"). (1) k=1,2...p. (6)
|D™ ('] . . ~
At this moment theé,,,  are not defined; only thé,,, .

. L This is due to the reparametrization that needs to be taken
Heresis an arc-length parametrization of the boundary. The, 4 account as explained next.

map ®(M(w) is constructed recursively. Suppose that we
have alreadyb (" (w) that maps to the exterior of a cluster of
n particles in the physical plane and we want to find the ma
®P)(w) after p additional particles were added to its
boundaryat once each proportional in size to the local value @(m)(eibm+k)z(b(m+ k=1)(glfm+k). 7)

of |P|#”2. To growonesuch particle we employ the elemen-

tary mape, , that transforms the unit circle to a circle with After thep particles were added, the conformal map and thus
a semispherical “bump” of linear size\ around the point the field should be updated. In updating, we will yseom-

Of course, every composition effects a reparametrization
of the unit circle, which has to be taken into account. To do
Rhis, we define a serie@,.}F_, according to

w=e? positions of the elementary mafy, ,(w). Next we define the
conformal map used in the next layer growth according to
(m+p) =@M
(1+)) 1 ¢ (@)= edy 1 npr® 'O¢9m+p )‘m+P(w)'

¢N0(W)—M{ o (1+w)| 1+w+w 1+v? (8)

ENE 12 In this way we achieve the growth at the images unb&P
S _1] ' (2) of the points{ &y }f_,. To compute thed series from a

w 1+A given'd series we use Ed8) to rewrite Eq.(7) in the form

. . i Omak— 4~ 1 o o1 )
d)}\vg(W):ele(ﬁ)\yo(e_IaW). (3) emrk= ¢0m+k—1’)‘m+k—l d)gm-#l’)‘m-*—l(e m+k)' (9)
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The inverse map qS;,i is given by (;b;’)l\(w) a line of such bumps, exactly as in DLA. Thus the putative

= e"’¢5f(e*i%) with cusp singularity of Laplacian growth is avoided in a manner
' that is identical for all the growth models in our two-
L, Ao?= W20l — 01— (1+N)o?][w?— (1+))] parameter family.
on= > , The conformal mapb("(w) admits a Laurent expansion
1-(1+MNw
(10 F")
y _ _ PM(w)=FPw+FM+—+.... (12

where the positive root is taken for Re>0 and the negative 0]

root for Rew<0. . . . .
Evidently, Laplacian growth calls for choosing the seriesThe coefficient of the linear term is the Laplace radius, and

{Em+k}E:1 such as to have full coverage of the unit circle was shown to scale like

(implying the same for the boundafy). On the other hand, F(n)__ glD (13)
DLA calls for growing a single particle before updating the 1 '
field. Since it was showfl10] that in DLA growth \,, de-
creases on the average wheimcreases, in the limit of large
clusters DLA is consistent with vanishingly small coverage n
of the unit circle. To interpolate between these two cases we S= 2 )\j|q>'(i—1)(e‘ %))2. (14)
introduce a parameter that serves to distinguish one growth i=1

model from the other, giving us a two-parameter confitod ) )

other parameter ig). This parameter is thdegree of cov- Note that for=0 this and Eq(5) imply that S=n\. In-
erage Since the area covered by the preimage of ritfe deed forB=0 this estimate had been carefully analyzed and
particle on the unit circle is approximately/ ., we intro- substantiatedup to a factoyin Ref.[11]. On the other hand,

whereSis the area of the cluster

duce the parameter F(ln) is given analytically by
n
1P
C=— 2 ek (1) F =TT VLo, (15
T k=1 =

(In Ref. [2] we showed how to measure the coverage exand therefore can be determined very accurately.
actly) Since this is the fraction of the unit circle which is ~ The conclusion from the calculations presented in Refs.
covered in each layer, the limit of Laplacian Growth is ob-[1,2] is that for C>0 the fractal dimension of the growth
tained withC=1. DLA is asymptotically consistent witf  patterns depends continuously on the parameters, growing
=0. Of course, the two models differ also in the size of themonotonically upon decreasing or increasingC. It is quite
growing bumps, with DLA having fixed size particlgg  Obvious why increasing should increase the dimension. By
=0 in Eq.(5)], and Laplacian growth having particles pro- forbidding particles to overlap we simply force them into the
portional toVP [B=2 in Eq.(6)]. Together withC we have  fiords, not allowing them to hit the tips onlfas is highly
a two parameter control on the para||e| growth dynamicsprObable. Also deCfeaSingg increases the dimension, since
with DLA and Laplacian growth occupying two corners of We grow larger particles into the fjords, whereas increasing
the 8,C plane, at the point§0,0) and (2,1), respectively. B reduces the size of particles added to fjords and increases
Obviously, the partially serial growth within the layer in- the size of particles that accrete onto tips. In particular, we
troduces an additional freedom that is tirdler of placement ~ argued that DLA and our discretized Laplacian growth can-
of the bumps on the unit circle. In Refd.,2] we have shown not have the same dimensions, putting them in different uni-
that the order is in fact immaterial as far as the asymptotid/ersality classes. In the rest of this paper we make these
fractal properties of the clusters are concerned. Accordinglyobservations more quantitative and precise.
we will take random choices df,,;  with a rule of skipping
overlaps. Ill. MULTIFRACTAL PROPERTIES
We should note that in our approach the regularization of
putative singularities is not achieved with surface tension, ) o .
but by having a minimal size bump, similarly to the regular- The fractal dimension in the3-C family of models,
ization of DLA. Our rules of growth witl3=2 and\, cho-  D(8.,C), is introduced as the exponent relating the area of
sen once and for all, guarantee that every layer of growth ha#ie clusterS, to its linear scaldwhich is measured by the
exactly the same area. This in the continuous time LaplaciaffimensionlessLaplace radiug={"1],:
growth model translates to a particular choice of the time -
stepdt. Clearly, one has freedom in choosidg, or of the S~ (F{M)PEOX,. (16)
size \q in each layer, as long as this does not affect the
nature of the growth. In particular, we can havg chosen In this equationXOE)\g/(2+ﬁ). The multifractal exponents
such that the maximal physical bump is of constant ared.12] are defined in analogy to those for DLA in terms of the
Once)\g is chosen, the sharpest feature that can be achievadoments of the(dimensionlesselectric field E(s) on the
is a bump of size\(, and the worst possible “singularity” is boundary of the clustdrl3],

A. Generalized dimensions
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FIG. 1. Layer and harmonic
averages ok, as a function of the
number of layers, foB=0. Pan-

10 . T els (a)—(d), C=0.01, 0.1, 0.3, and
E 0.5, respectively.
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<E(q71)>~(F(ln))f(qfl)Dq(B,C) Consider now the addition of one layer pfparticles to
the growing cluster. We can rewrite E{.1) as

~(Sy/Xg) @ UDBOIDES) (17)

. C=(Um)pin,
where(- - -) represents the harmonic average for tjfeQ)

clusters in question. Note that these exponents are for a fixgghere we have introduced the notati@ to represent the
size partition with boxes of Iengtk/X_ , with asymptotics for average over a layer qf particles,

an infinitely large cluster. A supremum over arbitrary parti-
tions may lead to different exponents, cf. Rieif4].

This result translates immediatdl¥0] to the multifractal
fluctuations of the bump areas, added in the mathematical
plane. As\9~EZ*A)4 whereE, is the field computed at
z(s)=®M(e'n). We therefore write

(21)

1 p
fOw=15 2 . (22

k=1

For our considerations below it is important to relate the
layer averageaJ to harmonic average@\}). This relation-
ship may very well depend on the value ®f The two cases
that are of highest interest to us g8e=0 andB=2, and we
will examine them separately.

<)\ﬁ>~(Sn/XO)_(2+B)qD(2+5)Q+1(B'C)/D(B’C). (18)
Specifically, we can derive the following important mo-

ments:

IV. SCALING RELATIONS FOR THE FRACTAL
(N~ (S X g) ~ -+ BIAP 21D DIMENSION D

~ A. The casef=0 and C>0
()~ (Sy/Xg) =@+ A)P31 /D, ,

19
(19 We examine the relationship between layer and harmonic

averages numerically. In Fig. 1 we show the two averages vs
the number of layers for the cage= 1, =0 and four values

where naturally all the dimensions are functions gi¢).  ©f C- In Fig. 2 we show the same for the cage 0.5, 3

We can also estimate the way in which the maximal bump=9 and the same four values 6f _
areas scale Examining the results it appears that for the higher values

of C we can assume that in the scaling sense

(NP ~ (8, /K g) PP,

An.ma= lim <)\g>l/q~(S/XO)—(2+B)Dx(B,C)/D(B,C). (20)

g N~(AD),  B=0. (23
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Note that for smaller values @fthe evidence is not as clear No
cut as for higher values. The number of poipis each layer S~ ——. (28)
is relatively small and the layer average is highly fluctuating. aD\,

Nevertheless, even for the ca€e-0.01, if we perform a

running average on the layer average data, we converge vetyEg. (23) is used, we find finally

well onto the harmonic average. We therefore propose to

proceed with the conjecture that E&3) is correct for all the _ (s,

values ofC and3=0, and investigate the implications of this Sh~No| = ; (29)
scaling relation for the cases for which it is correct. An im- o

mediate consequence of Eq81) and (23) is that from which we derive the well known “electrostatic rela-

~ tion,”
p~CI(\\ o) ~C(S/X0)%2°. (24)
_ _ D=2Ds,. (30)
We note that this means thpt—o~ asymptotically for every
value ofC, while p/n—0. This result was known faf=0 [15], and is generalized here,
Next observe that by definition under the conjectur&3) to all values ofC.

()= () _ Let us consider now the probability to hit at the point of
FIV PR =TI 1(1+Nqp)?~1+aph,. (25  maximal radius. We propose that for any findethe prob-
ability for this event is finite. We stress that this “point” is

actually a region on the interface of sixgo in every layer.
In particular, we expect that the growth process will hit the
point of maximal radius every finite number of layers, where
this number is of the order of @/We also know for sure that

In light of Eq. (16) we write

Sn+p _ ( I:(anrp)

D
~1+aDp\,. (26)
Sn Fg-n) ) p n

we have at most one hit per layer since particles cannot over-

On the other hand, we estimate lap in the dynamics. _ _
Consider now the scaling of the size of the growth pat-

tern, which is measured biy{" . First we know that={"

S PA -
R (27)  ~(SIn)*P, and therefore
S Sh
and comparing with Eq26) we find dFY/dS~(S/Xo) ™K, (31)
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Comparing Eqgs(31) and(32), using Eq.(24) we obtain the
scaling relation

100k D=1+D,. (33
i Using the inequalities between the generalized dimensions
p and Eq.(31) we write
D—-1=D,=D3=D/2 forall C>C,, (34

10¢
which is equivalent to

D=2 forallC>C,. (35

10 100 1000 10000
n In other words, we conclude that along the lige=0 in the

phase diagranB-C, there exists a transition to growth pat-
terns of dimension 2.

Since our arguments are not rigorous and the result quite
surprising, we will examine the assumptions using an addi-
tional consideration. From Egé33) and (34) it follows that
D,=1, and from Eq(24) it then follows thatp scales like

FIG. 3. The numbep of bumps in a layer vs the numbarof
bumps in the growth pattern, in a log-log plot. From top to bottom
that is shown forlC=0.5, 0.3, 0.1, and 0.01, respectively. In white
lines we show the scaling laws~n?, this law fits the data fo€
=0.1 and is not in contradiction with th@oisy) data even foiC
=0.01.

p~S2  c>c,. (36)
On the other hand, we estimate the same object using the
following argument: the maximal radiu®™ increases by This prediction is examined directly in Fig. 3. We see that it
\/yTO every time that it is hit. This occurs everyCliayers in ?s obeyed extremel_y weII_ for all the values @=0.1, and it
which p particles were added. Therefore is not in contradiction with the da.ta_ even f6=0.01. We
therefore cannot exclude the possibility tligt=0.
To gain intuition to the meaning of this result we show in

dr™ \/TT Fig. 4 the actual growth patterns fgr=0 andC=0.01, 0.1,
- o (32) 0.3, and 0.5, respectively. To plot these figures we éiththe
dS  pX,/C exposed branch cuts on the unit circles which are associated
cof T ] 500 8
L lz‘_=|].01
el
260 1) A - 3

AR ]

FIG. 4. Clusters for8=0.

4 Panels(a)—(d), C=0.01, 0.1, 0.3,
500 and 0.5, respectively. Note the ar-
eas significantly larger than the
UV cutoff Ay, which appear al-
ready forC=0.01.

-600-
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5

300 100}

-300 -100
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c=+ ¢=0.5 > D=2,00 e
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ERTI L v veviom 3
1 100 10000
radius

area FIG. 6. The correlation dimensiob, for =0 andC=0.01,
0.1, 0.3, and 0.5. The thick line has slope 1, indicating hat

FIG. 5. The first Laurent coefficierf}"” as a function of the —1 and therefor® =2 for all shownC.

area for=0 andC=0.01, 0.1, 0.3, and 0.5. The fractal dimension

. . =) 1D H H
D is obtained for the slope Vii{" ~ o(S/ko) ™. only taken as lower bounds on the true dimension, and these

may not be very sharp.
with the bumps added in the growth procésse Ref[2] for A possibly better way to measure the dimension would be
detaily. Then we plot the image of all these points under thethrough the result33) when it holds. We have very good
conformal map and connect them by lines. Thus we are guamethods to determine the correlation dimensids going
anteed that what is plotted is the actual contour of the growttback to the Grassberger-Procaccia algoritfit6]. To this
pattern, of the image of the unit circle in the mathematicalagim we choose randomlyn= 100000 points{#;}" ,, and

domain, with all the fjordS fU”y resolved. We see that evencompute their positions on the interface of the C|u§er
with the lowest value of the branches appear to gain sub- :(I)(n)(ei 9i)_ Next we Compute the correlation integra]

stance as they grow, having a width that is larger tiag
(the typical corrugation of the interfaceConsequently it is
not impossible thaD=2 even for the lowest values @f C(z)(r):;j 0(zi—z|-n), (37
>0. If this is so0, it is not due to the existence of an ultravio-
let cutoff, but due to the finiteness 6f With C=0 (the DLA  where®(x) is the step function, being 1 fo=<0 and 0 for
limit) the serial algorithm favors strongly truly fractal pat- x>0. The correlation integral is known to scale according to
terns. The parallel growth algorithm with fini@ squeezes
more substance into the fjords, reducing that tendency. For C@(r)~rPz, (39
higher values of’ it becomes obvious that the growth pat- ) ) ) o )
terns are two dimensional, and f6e=0.5 the pattern grows N Fig- 6 we display this object in a log-log plot as a function
like a roughened disk. The main conclusion of this analysisOf r. All the values ofC agree with a correlation dimension of
is that we certainly cross somewhere along the |0 D,=1, as can be seen from the plots at sma]l scales. For
into growth patterns that are two-dimensional. Whether othose values of for which Eq.(33) is correct this leads to
not the critical value o€ is finite or zero cannot be deter- the aforementioned resul=2.
mined by numerics alone.

If we accept the possibility that even the lowest values of B. The casep=2 and C>0

C are associated with growth patterns that are two dimen- the next interesting family of growth patterns that we
sional, then we should stress that standard ways of estimajs.,s on is obtained fog=2 and C>0, with Laplacian

ing the dimension of these clusters, especially for the lowesérowth expected to be realized f6r= 1. We find that for3
value ofC, may fail to discoyer this fact. For example, we < g the numerics do not support the scaling relati2@). In

can computé={"” and then, using Eq13), attempt to extract Figs. 7 and 8 we show the layer and harmonic averages for
the dimension from log-log plots oF {" againstS This  g=2 and it is obvious that in this case

method works very well for the fractal case, but it does not o

appear to do so well for the cases at hand. In Fig. 5 we show Nl<s(Ad) (39
such log-log plots for all the clusters of Fig. 4. We see that

even with 100000 particles the dimension estimate is wayn the scaling sense.

below the suspected =2, except forC=0.5. In fact, any Once we have lost the scaling relati¢23) we cannot
practitioner in the fractal field would be happy to interpretargue thaD =2 for any value of’>0. We will find numeri-
the scaling obtained faf=0.01 as an indication that it is in cally that along the ling8=2 we indeed find fractal patterns,
the same universality class as DLA, with dimension very(and cf. the following section nevertheless, even along this
close toD=1.71. While we cannot state confidently that for line there exists a transition to two-dimensional patterns, al-
C=0.01 the growth pattern is two-dimensional, we stress thabeit at a finite and rather high value 6f Next we want to
the dimension estimates obtained from log-log plots can bestimate this value.
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FIG. 7. Layer and harmonic
averages ok, as a function of the
number of layers, foB=2. Pan-
els (a)—(d), C=0.01, 0.1, 0.3, and
0.5, respectively.

FIG. 8. Layer and harmonic
averages oh%° as a function of
the number of layers, foB=2.
Panels(a)—(d), C=0.01, 0.1, 0.3,
and 0.5, respectively.
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10— ——— models that are seen fg8=—1, see Fig. 10. Obviously
R Pary vy /] these are two dimensional. The family of growth patterns
ey R oy S obtained forB=0 were shown in Fig. 4, and as we said

(o b > D178 S ] above, there must be a cross over two-dimensional patterns
in this family. Going up tog=1 we show the growth pat-
terns in Fig. 11. In this case the images indicate that for the
- lower values of” the growth patterns are fractal, whereas for
] higher values ofC they become two dimensional. Thus the
line of separation that we seek in theC phase diagram
appears to cut th@=1 line. Finally, in Fig. 12 we present
the family of growth patterns obtained f@=2. It appears
that the transition line intersects also tAe=2 line.

All the patterns exhibited in Figs. 4, 10—-12 are grown
with a fixed size\ ;. Consequently, foB>0 the actual mean
size of the bumps in the physical space decreases as the

FIG. 9. The first Laurent coefficier(" as a function of the Cluster grows, while it increases f@<0. This may lead to
area forg=2 andC=0.01, 0.1, 0.3, and 0.5. The fractal dimension worries, i.e., that for3>0 the growth arrests and that for
D is obtained for the slope Vii{" ~ \/X_o(S/Xo) D B<0 the increase in the size of the bumps leads to coverage

of fjords, such that the two-dimensional patterns shown in
V. CONJECTURE: LAPLACIAN GROWTH IS Fig. 10 wquld be an artifact. To dispersg these \'/vorries.we
TWO-DIMENSIONAL have considered alternative growth algorithms with varying

the size ofAo. The first such algorithm is obtained by requir-

In this section we motivate our conjecture that Laplacianing that the total area covered in each layer of growth is
growth patterns are not fractal patterns at all, but rather pateonstant, i.e.,
terns of dimension 2. We have to be a bit circumvent, since
as explained in Ref2], we cannot directly run our algorithm
for the B8-C model for values of higher than about 0.65. The
reason is that it becomes impossible to fill up, by random
selection of points on the unit circle, a full layer of bumps on , ~ B
the physical interface. Therefore our aim is to find a line in =?\o(n)k21 | (V(e'h+i)| ~F=const. (40)
the B-C phase diagram that separates frabtal 2 from two-
dimensional growth patterns. That such a line must exist w&lote that for constant coveraggthis rule coincides with
can convince ourselves by examining the family of growthfixed values of\, for =2 [cf. Eq. (11)]. In the second

area

p
2, Ayl @ (e |2
k=1

p

FIG. 10. Growth patterns for
B=—1. Panels(a)—(d), C=0.01,
0.1, 0.3, and 0.5, respectively.
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FIG. 11. Growth patterns for
B=1. Panels (a)—(d), C=0.01,
0.1, 0.3, and 0.5, respectively.

FIG. 12. Growth patterns for
B=2. Panels (a)—(d), C=0.01,
0.1, 0.3, and 0.5, respectively.
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2r

] tively. We thus propose that the valde- 1 for =2 is com-
1 fortably within the region of two-dimensional patterns in this
phase diagram.

VI. CONCLUSIONS

We have presented a careful numerical study of a two-
parameter model of growth patterns that generalizes and in-
terpolates between diffusion-limited aggregation and Laplac-
ian growth patterns. The model gives rise to a rich plethora
of growth patterns, with fractal dimensions that depend on
I the v_alues of the par_amete;@sandc. For3=0 andC=0 we
1103 05 07 00 obtain DLA. Laplacian growth patterns hayg=2 andC

C =1, but we cannot probe the valde=1 within our algo-
rithm. Since our aim, in part, is to demonstrate that Laplacian
growth patterns are not fractal, we resorted to examining the
phase diagrang-C. We established, on the basis of scaling

. . o arguments, simulations, and visual observations that this
=1.99, respectively. The lines are quadratic fits. We propose thal, <o giagram contains a line of transition between fractal
the region below the lines represents two-dimensional growth pat: : . -
terns. see text for details. and_ t_wo-dlme_ns_|onal growth patterns. We have es_tlmated the
' position of this line, and demonstrated that Laplacian growth
patterns belong safely in the region of two-dimensional
. . . . growth patterns.
algor_lthm we choose the maximal size of the bump in the™ 5,0 gy g point out that the statement that Laplacian
physical plane to be constant from layer to layer, growth are two-dimensional does not mean that it is a grow-
ing disk. To the eye the patterns can look fractal, and in fact
radius-area log-log plots might initially even indicate that the
dimension is low, and may be of the order of the dimension
of DLA. Deep fjords may exist in the structure. The relevant
question is whether the growing branches of the structure
contain substancéarea and whether this area is growing
This rule coincides with fixed values ofy for B=0. We  relatively with the growth of the pattern. The growth pattern
found that in all cases the patterns shown above remain irshown in Fig. 11d) is a case in point. It looks fractal to the
variant to the change of the algorithms. Thus we submit thataked eye, but careful examination shows that the branches
the figures shown can be fully trusted. have area. Thus one needs to decide whether this area is due

To find the line that separates fractal from two-to some ultraviolet cutoff length, or does it grow systemati-
dimensional patterns we estimate the dimensions directlgally beyond what is expected on the basis of the existence
from log-log plots ofF (" vs S We have seen above that such of such a cutoff.
estimates aréower bounds to the actual asymptotic dimen-  Before closing we reiterate that our demonstration that
sion. As these logarithmic plots are invariably concave, we aplacian growth patterns are two-dimensional is not direct.
can use the slope at the largest values of area available asfe cannot, within our algorithm, gro@=1 patterns. We
measure for the lower bound on the dimensisee, e.g., Fig. therefore leave this at the moment as a conjecture. It remains
9). In Fig. 13 we show the three lines obtained by searchinga theoretical challenge to show that this conjecture is indeed
for a given value of’, the value ofg for which for the first  provable by direct mathematical analysis. We also leave for
time the dimension estimated frof(™ vs S crosses the future work the question whether th@=0 line represents
value D=1.90 (upper curvgg D=1.95 (middle ling, and  two-dimensional growth patterns for aft>0. Finally, we
D=1.99 (lower curvg. We propose that the last two lines propose that future work may make use of the fractal patterns
may very well be already beyond the true line that separateslong the lineC=0, S>>0 for further fundamental studies
fractal from D=2 asymptotic dimension. From the discus- of DLA and related phenomena.
sion of Sec. IV Awe cannot even exclude the possibility that
the transition line obfuscates thg=0 line. All the region
below the lower line is almost surely representing patterns of
D=2, but we strongly believe that this is the case also for We thank Benny Davidovitch for a critical reading of the
the middle line. The lines were obtained by finding, as ex-manuscript, and for a number of useful comments. This work
plained, the values oB yielding D=1.90, 1.95, and 1.99, has been supported in part by the European Commission
respectively, and then fitting to the points a quadratic funcunder the TMR program, The Petroleum Research Fund, and
tion. Next we extrapolated the three fits to valueCahat  the Naftali and Anna Backenroth-Bronicki Fund for Re-
are not readily available in our algorithm. The three fit linessearch in Chaos and Complexity. A.L. thanks the Minerva
intersect theB=2 line atC=0.73, 0.78, and 0.79, respec- Foundation, Munich, Germany for financial support.

FIG. 13. The phase diagram in tifieC plane. The data points in
crosses, triangles, and circles represent valugg afidC for which
the radius-area relationship predids=1.90, D=1.95, andD

p .
Ao(nymax|® (M(e'n+k)| ~A}=const. (41)
k=1
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